Cross-Sensor Fingerprint Enhancement Using Adversarial Learning and Edge Loss

Author:

Alotaibi AshwaqORCID,Hussain MuhammadORCID,AboAlSamh HatimORCID,Abdul WadoodORCID,Bebis George

Abstract

A fingerprint sensor interoperability problem, or a cross-sensor matching problem, occurs when one type of sensor is used for enrolment and a different type for matching. Fingerprints captured for the same person using various sensor technologies have various types of noises and artifacts. This problem motivated us to develop an algorithm that can enhance fingerprints captured using different types of sensors and touch technologies. Inspired by the success of deep learning in various computer vision tasks, we formulate this problem as an image-to-image transformation designed using a deep encoder–decoder model. It is trained using two learning frameworks, i.e., conventional learning and adversarial learning based on a conditional Generative Adversarial Network (cGAN) framework. Since different types of edges form the ridge patterns in fingerprints, we employed edge loss to train the model for effective fingerprint enhancement. The designed method was evaluated on fingerprints from two benchmark cross-sensor fingerprint datasets, i.e., MOLF and FingerPass. To assess the quality of enhanced fingerprints, we employed two standard metrics commonly used: NBIS Fingerprint Image Quality (NFIQ) and Structural Similarity Index Metric (SSIM). In addition, we proposed a metric named Fingerprint Quality Enhancement Index (FQEI) for comprehensive evaluation of fingerprint enhancement algorithms. Effective fingerprint quality enhancement results were achieved regardless of the sensor type used, where this issue was not investigated in the related literature before. The results indicate that the proposed method outperforms the state-of-the-art methods.

Funder

National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabi

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference28 articles.

1. Handbook of Fingerprint Recognition;Maltoni,2009

2. Biometric Sensor Interoperability: A Case Study in Fingerprints;Ross,2004

3. A Cross-Device Matching Fingerprint Database from Multi-Type Sensors;Jia;Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012),2012

4. A CNN-Based Framework for Comparison of Contactless to Contact-Based Fingerprints

5. Multisensor Optical and Latent Fingerprint Database

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3