Dual-Function Meta-Grating Based on Tunable Fano Resonance for Reflective Filter and Sensor Applications

Author:

Liu Feifei1ORCID,Jia Haoyu1,Chen Yuxue1,Luo Xiaoai1,Huang Meidong1,Wang Meng2,Zhang Xinping3ORCID

Affiliation:

1. College Physics & Materials Science, Tianjin Normal University, Tianjin 300387, China

2. School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China

3. Institute of Information Photonics Technology, College of Applied Sciences, Beijng University of Technology, Beijing 100124, China

Abstract

Localized surface plasmon resonance (LSPR)-based sensors exhibit enormous potential in the areas of medical diagnosis, food safety regulation and environmental monitoring. However, the broadband spectral lineshape of LSPR hampers the observation of wavelength shifts in sensing processes, thus preventing its widespread applications in sensors. Here, we describe an improved plasmonic sensor based on Fano resonances between LSPR and the Rayleigh anomaly (RA) in a metal–insulator–metal (MIM) meta-grating, which is composed of silver nanoshell array, an isolation grating mask and a continuous gold film. The MIM configuration offers more freedom to control the optical properties of LSPR, RA and the Fano resonance between them. Strong couplings between LSPR and RA formed a series of narrowband reflection peaks (with a linewidth of ~20 nm in full width at half maximum (FWHM) and a reflectivity nearing 100%) within an LSPR-based broadband extinction window in the experiment, making the meta-grating promising for applications of high-efficiency reflective filters. A Fano resonance that is well optimized between LSPR and RA by carefully adjusting the angles of incident light can switch such a nano-device to an improved biological/chemical sensor with a figure of merit (FOM) larger than 57 and capability of detecting the local refractive index changes caused by the bonding of target molecules on the surface of the nano-device. The figure of merit of the hybrid sensor in the detection of target molecules is 6 and 15 times higher than that of the simple RA- and LSPR-based sensors, respectively.

Funder

National Natural Science Foundation of China

Ph.D. startup foundation of Tianjin Normal University

scientific research projects of the Inner Mongolian higher educational system

Fudan University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3