Fluorescence Hyperspectral Imaging for Early Diagnosis of Heat-Stressed Ginseng Plants

Author:

Faqeerzada Mohammad AkbarORCID,Park Eunsoo,Kim TaehyunORCID,Kim Moon Sung,Baek InsuckORCID,Joshi Rahul,Kim JuntaeORCID,Cho Byoung-KwanORCID

Abstract

Ginseng is a perennial herbaceous plant that has been widely consumed for medicinal and dietary purposes since ancient times. Ginseng plants require shade and cool temperatures for better growth; climate warming and rising heat waves have a negative impact on the plants’ productivity and yield quality. Since Republic of Korea’s temperature is increasing beyond normal expectations and is seriously threatening ginseng plants, an early-stage non-destructive diagnosis of stressed ginseng plants is essential before symptomatic manifestation to produce high-quality ginseng roots. This study demonstrated the potential of fluorescence hyperspectral imaging to achieve the early high-throughput detection and prediction of chlorophyll composition in four varieties of heat-stressed ginseng plants: Chunpoong, Jakyeong, Sunil, and Sunmyoung. Hyperspectral imaging data of 80 plants from these four varieties (temperature-sensitive and temperature-resistant) were acquired before and after exposing the plants to heat stress. Additionally, a SPAD-502 meter was used for the non-destructive measurement of the greenness level. In accordance, the mean spectral data of each leaf were extracted from the region of interest (ROI). Analysis of variance (ANOVA) was applied for the discrimination of heat-stressed plants, which was performed with 96% accuracy. Accordingly, the extracted spectral data were used to develop a partial least squares regression (PLSR) model combined with multiple preprocessing techniques for predicting greenness composition in ginseng plants that significantly correlates with chlorophyll concentration. The results obtained from PLSR analysis demonstrated higher determination coefficients of R2val = 0.90, and a root mean square error (RMSE) of 3.59%. Furthermore, five proposed bands (683 nm, 688 nm, 703 nm, 731 nm, and 745 nm) by stepwise regression (SR) were developed into a PLSR model, and the model coefficients were used to create a greenness-level concentration in images that showed differences between the control and heat-stressed plants for all varieties.

Funder

Ministry of Agriculture, Food, and Rural Affairs

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3