Predicting the Onset of Freezing of Gait Using EEG Dynamics

Author:

John Alka Rachel,Cao Zehong,Chen Hsiang-Ting,Martens Kaylena Ehgoetz,Georgiades Matthew,Gilat Moran,Nguyen Hung T.ORCID,Lewis Simon J. G.,Lin Chin-Teng

Abstract

Freezing of gait (FOG) severely incapacitates the mobility of patients with advanced Parkinson’s disease (PD). An accurate prediction of the onset of FOG could improve the quality of life for PD patients. However, it is imperative to distinguish the possibility of the onset of FOG from that of voluntary stopping. Our previous work demonstrated the neurological differences between the transition to FOG and voluntary stopping using electroencephalogram (EEG) signals. We employed a timed up-and-go (TUG) task to elicit FOG in PD patients. Some of these TUG tasks had an additional voluntary stopping component, where participants stopped walking based on verbal instruction to “stop”. The performance of the convolutional neural network (CNN) in identifying the transition to FOG from normal walking and the transition to voluntary stopping was explored. To the best of our knowledge, this work is the first study to propose a deep learning method to distinguish the transition to FOG from the transition to voluntary stop in PD patients. The models, trained on the EEG data from 17 PD patients who manifested FOG episodes, considering a short two-second transition window for FOG occurrence or voluntary stopping, achieved close to 75% classification accuracy in distinguishing transition to FOG from the transition to voluntary stopping or normal walking. Our results represent an important step toward advanced EEG-based cueing systems for smart FOG intervention, excluding the potential confounding of voluntary stopping.

Funder

Australian Research Council

Australia Defence Innovation Hub

US Office of Naval Research Global

AFOSR – DST Australian Autonomy Initiative agreement

AFOSR

NSW Defence Innovation Network and the NSW State Government of Australia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3