Citrus Tree Crown Segmentation of Orchard Spraying Robot Based on RGB-D Image and Improved Mask R-CNN

Author:

Cong Peichao,Zhou Jiachao,Li Shanda,Lv Kunfeng,Feng Hao

Abstract

Orchard spraying robots must visually obtain citrus tree crown growth information to meet the variable growth-stage-based spraying requirements. However, the complex environments and growth characteristics of fruit trees affect the accuracy of crown segmentation. Therefore, we propose a feature-map-based squeeze-and-excitation UNet++ (MSEU) region-based convolutional neural network (R-CNN) citrus tree crown segmentation method that intakes red–green–blue-depth (RGB-D) images that are pixel aligned and visual distance-adjusted to eliminate noise. Our MSEU R-CNN achieves accurate crown segmentation using squeeze-and-excitation (SE) and UNet++. To fully fuse the feature map information, the SE block correlates image features and recalibrates their channel weights, and the UNet++ semantic segmentation branch replaces the original mask structure to maximize the interconnectivity between feature layers, achieving a near-real time detection speed of 5 fps. Its bounding box (bbox) and segmentation (seg) AP50 scores are 96.6 and 96.2%, respectively, and the bbox average recall and F1-score are 73.0 and 69.4%, which are 3.4, 2.4, 4.9, and 3.5% higher than the original model, respectively. Compared with bbox instant segmentation (BoxInst) and conditional convolutional frameworks (CondInst), the MSEU R-CNN provides better seg accuracy and speed than the previous-best Mask R-CNN. These results provide the means to accurately employ autonomous spraying robots.

Funder

Central Leading Local Science and Technology Development Special Fund Project

Guangxi Key Research and Development Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning improved YOLOv8 algorithm: Real-time precise instance segmentation of crown region orchard canopies in natural environment;Computers and Electronics in Agriculture;2024-09

2. Comparing YOLOv8 and Mask R-CNN for instance segmentation in complex orchard environments;Artificial Intelligence in Agriculture;2024-09

3. Grapevine Branch Recognition and Pruning Point Localization Technology Based on Image Processing;Applied Sciences;2024-04-15

4. Enhanced Citrus Fruit Disease Detection: Combining CNN and Random Forest Models;2024 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC);2024-01-27

5. Disease Control Measures Using Vision-Enabled Agricultural Robotics;Applications of Computer Vision and Drone Technology in Agriculture 4.0;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3