Abstract
The encapsulation efficiency (EE%) and structural changes within the Anthraquinones-encapsulated casein micelles (CM) powders were evaluated in this study. For this purpose, the anthraquinone powder extracted from Aloevera, its freeze-dried powder (FDP) and whole leaf Aloe vera gel (WLAG) has been encapsulated in CM through ultrasonication prior to spray dying to produce nanocapsules: CM encapsulated anthraquinone powder (CMAQP), CM encapsulated freeze-dried powder (CMFDP) and CM encapsulated Whole leaf aloe vera gel (CMWLAG). Based on the pH of the solution before drying, CMAQP had the highest EE% following spray drying. However, due to air-interface-related dehydration stresses, SD resulted in a slight decrease in the EE% of anthraquinones (aloin, aloe-emodin, and rhein) in CMAQP. Meanwhile, a significant increase in EE% of CMFDP was observed compared to the aqueous state. According to SEM findings, the particle size of CMAQP was 2.39 µm and ξ-potential of ~−17mV. The CMFDP had a rough fractal surface with large particle sizes and potential of 3.49 µm and ~−11mV respectively. CM deformed, having the least EE% and lowest ξ-potential (−4.5 mV). Spray drying enhances melanoidin formation in CMWLAG, as evidenced by the highest chroma values. The results suggested that EE%, stability, and degree of Maillard reaction are closely linked to the type of anthraquinone encapsulated, the pH of the solution, and the nanostructure of casein micelles during spray drying.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献