Effects of Vibration on Adjacent Pipelines under Blasting Excavation

Author:

Qin TiangeORCID,Wu Mingze,Jia Lin,Xie Lingli,Wu Li

Abstract

Exploring a pipeline’s response to blast vibration during tunnel excavation is critical for ensuring the safety of the pipeline. In this paper, the vibration monitoring and numerical simulation methods are used to evaluate the dynamic response of ground soil and pipelines to blasts. The attenuation law of peak particle velocity (PPV) and the distribution characteristics of peak effective stress (PES) in pipe sections under different working conditions are studied. The following findings are recorded: (1) A three-dimensional model considering in situ stress is established, and it is found the triangular equivalent load simulation blast effect method used in this paper can effectively reflect the impact of blasting on pipelines. The simulation error is controlled at 7.69%. (2) The ground PPV of each monitoring point decays continuously with the increase in horizontal and axial distance, and the cavity enlargement effect is exhibited above the excavation area. The oncoming blast side PPV of the pipe section is more significant than that behind the blast side. (3) When the blast vibration is transmitted to the pipe, there are differences in the PPV and PES distribution characteristics across the pipe cross-section. The PPV is greater in the lower part of the pipe section, while the PES value is greater in the upper part of the pipe section. The maximum PES of 1.53 MPa is significantly lower than the safety threshold (≤4.6 MPa) at the hazardous-section-monitoring point. (4) A pipeline PPV prediction model is proposed to guide subsequent blasting program development. An empirical formula for the safety criterion applicable to this study is proposed for the scientific implementation of safety assessments for subsequent construction. This safety evaluation framework can be used as a reference for similar projects.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3