Effective Selfish Mining Defense Strategies to Improve Bitcoin Dependability

Author:

Zhou Chencheng,Xing Liudong,Liu Qisi,Wang Honggang

Abstract

Selfish mining is a typical malicious attack targeting the blockchain-based bitcoin system, an emerging crypto asset. Because of the non-incentive compatibility of the bitcoin mining protocol, the attackers are able to collect unfair mining rewards by intentionally withholding blocks. The existing works on selfish mining mostly focused on cryptography design, and malicious behavior detection based on different approaches, such as machine learning or timestamp. Most defense strategies show their effectiveness in the perspective of reward reduced. No work has been performed to design a defense strategy that aims to improve bitcoin dependability and provide a framework for quantitively evaluating the improvement. In this paper, we contribute by proposing two network-wide defensive strategies: the dynamic difficulty adjustment algorithm (DDAA) and the acceptance limitation policy (ALP). The DDAA increases the mining difficulty dynamically once a selfish mining behavior is detected, while the ALP incorporates a limitation to the acceptance rate when multiple blocks are broadcast at the same time. Both strategies are designed to disincentivize dishonest selfish miners and increase the system’s resilience to the selfish mining attack. A continuous-time Markov chain model is used to quantify the improvement in bitcoin dependability made by the proposed defense strategies. Statistical analysis is applied to evaluate the feasibility of the proposed strategies. The proposed DDAA and ALP methods are also compared to an existing timestamp-based defense strategy, revealing that the DDAA is the most effective in improving bitcoin’s dependability.

Funder

Cybersecurity Graduate Research Fellowship from the University of Massachusetts Dartmouth Cybersecurity Center

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BA-flag: a self-prevention mechanism of selfish mining attacks in blockchain technology;International Journal of Information Security;2024-05-20

2. Selfish mining attack in blockchain: a systematic literature review;International Journal of Information Security;2024-04-10

3. A Repeated Game-Based Distributed Denial of Service Attacks Mitigation Method for Mining Pools;Electronics;2024-01-18

4. FORTIS: Selfish Mining Mitigation by (FOR)geable (TI)me(S)tamps;Distributed Ledger Technologies: Research and Practice;2023-12-14

5. System-Level Dependability Analysis of Bitcoin under Eclipse and 51% Attacks;International Journal of Mathematical, Engineering and Management Sciences;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3