Numerical Simulation of Flow Field of Submerged Angular Cavitation Nozzle

Author:

Dong Wenqiang,Yao LigangORCID,Luo WeilinORCID

Abstract

A model of a submerged angular cavitation nozzle is established, which consists of a contraction part, parallel middle part, and expansion part. Based on the CFD technique, a numerical simulation of the flow field of the submerged cavitation nozzle is carried out, in which a multiphase mixture model, cavitation model, and renormalization group (RNG) k-ε turbulence model are applied. Considering the influence of mixture density on cavitation, the effects of the inlet contraction part, parallel middle part, and outlet expansion part on the velocity and vapor volume fraction are studied. The numerical simulation results show that the mixture density is essential in the cavitation jet. When the nozzle diameter d is fixed, the designed angular cavitation nozzle with contraction angle α = 13.5°, parallel middle part length Ld = 3d, expansion part length Le = 4d, and expansion angle β = 60° can effectively bring out cavitation. A cavitation cloud is produced near the rigid wall of the outlet expansion section and diffuses in a vortex ring shape. Optimizing the nozzle structure can improve the cavitation effect of the nozzle. The feasibility of this model is verified by relevant experimental data.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3