Abstract
The requirement of mounting several access points and base stations is increasing tremendously due to recent advancements and the need for high-data-rate communication services of 5G and 6G wireless communication systems. In the near future, the enormous number of these access points might cause a mess. In such cases, an optically transparent antenna (OTA) is the best option for making the environment more appealing and pleasant. OTAs provide the possible solution as these maintain the device aesthetics to achieve transparency as well as fulfill the basic coverage and bandwidth requirements. Various attempts have been made to design OTAs to provide coverage for wireless communication, particularly for the dead zones. These antennas can be installed on building windows, car windscreens, towers, trees, and smart windows, which enables network access for vehicles and people passing by those locations. Several transparent materials and techniques are used for transparent antenna design. Thin-film and mesh-grid techniques are very popular to transform metallic parts of the antenna into a transparent material. In this article, a comprehensive review of both the techniques used for the design of OTAs is presented. The performance comparison of OTAs on the basis of bandwidth, gain, transparency, transmittance, and efficiency is also presented. An OTA is the best choice in these situations to improve the aesthetics and comfort of the surroundings with high antenna performance.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献