Study of the Influence of the Dielectrophoretic Force on the Preferential Growth of Bacterial Biofilms in 3D Printed Microfluidic Devices

Author:

Csapai AlexandraORCID,Toc Dan AlexandruORCID,Pascalau VioletaORCID,Tosa NicoletaORCID,Tripon Septimiu,Ciorîță AlexandraORCID,Mihaila Razvan Marian,Mociran Bogdan,Costache Carmen,Popa Catalin O.

Abstract

Understanding the effect of different electric potentials upon the preferential formation of biofilms inside microfluidic devices could represent a step forward in comprehending the mechanisms that govern biofilm formation and growth. 3D printed microfluidic devices were used to investigate the influence of the dielectrophoretic forces on the formation and growth of Staphylococcus aureus ATCC 25923 biofilms. Bacterial suspensions of 2.5 McF were pushed through microfluidic channels while simultaneously applying various potential differences between 10 and 60 V. The overall electric field distribution within the channel was simulated using the COMOSL software. The effect of the electric potential variation on the preferential biofilm formation was determined using an adjusted microtiter plate technique, as well as a qualitative method, Scanning Electron Microscopy (SEM). SEM images were used to describe the morphology of the biofilm surface. The conclusions show that the dielectrophoretic forces, resulting due to inhomogeneity of the electric field, have more visible effects upon the cells up to 40 V. Above this magnitude, due to a more homogenous distribution of the electric field, the formation and growth of the biofilm become more uniform. At around 60 V, the distance between the high electric gradient regions decreases, leading to an almost uniform distribution of the electric field and, therefore, to a shift from dielectrophoretic to electrophoretic forces acting upon the bacterial cells.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3