Abstract
Electric vehicle (EV) fire accidents are caused by multiple factors, including the traffic conditions, parking environment and firefighting facilities, and are a typical public safety issue in cities. Owing to the lack of accurate and quick estimation methods for the EV fire analysis in roadside parking scenarios and their impacts, this study applied the solid flame model to simplify the determination of the dynamic turbulence characteristics of the EV fire flames and proposed a thermal radiation model of an EV thermal runaway combustion flame based on the peak heat release rate. Subsequently, the radiation accuracy of the model near the flame was verified by a simulation and a comparison with the point source flame model, where the safety threshold of the fire accident propagation was determined. Finally, the evacuation strategy for pedestrians in an EV fire was investigated based on the proposed model. From the results, the safe distance of adjacent vehicles and the cumulative value of the pedestrians affected by the thermal radiation of EV fires can be obtained under the influence of the environmental factors. The proposed model can be used to optimize the design of roadside parking lots and guide the formulation of pedestrian emergency plans during an EV fire.
Funder
National Key Research and Development Program of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science