Research on Mechanical Characteristics of Slope Reinforcement by Spatial Arc Crown Beam Composite Supporting Structure

Author:

Deng Yousheng,Yao Zhigang,Peng Chengpu,Li Wenjie,Zhang Keqin

Abstract

To effectively optimize the mechanical behavior of a traditional anti-slide pile and reduce environmental destruction, a new method for slope reinforcement by a spatial arc crown beam composite supporting structure was proposed. First, a numerical model was validated through lab-scale model test data obtained herein, and then a full-scale numerical model was created for an in-depth understanding of the distribution regularity of displacement along the pile, the soil pressure, the crown beam stiffness, and so on. The results demonstrated that: (1) The spatial arc crown beam is simplified to a two-hinged arch, and the maximum value of the bending moment in the arc crown beam is about one-third of the straight crown beam through theoretical calculation. (2) The spatial arc crown beam redistributes the load sharing among different piles, and the extreme bending moment of other piles varies within 10% along the downhill direction except for the piles at the slope foot. (3) Bending moments are close to zero at the pile end, and the anti-slide pile can be simplified as a vertical beam with one end fixed and the other end hinged. (4) The axial force in the spatial arc crown beam is always presented as pressure, so the crown beam can make full utilization of the compression resistance of concrete. (5) The distribution characteristic of soil pressure in front of the pile at the arch foot is different from that in other positions, and the stable soil at the slope foot provides greater soil resistance for anti-piles. (6) As the crown beam stiffness is above five times the reference value, the axial force of the crown beam tends to be stable, and as the crown beam stiffness increases continually, the maximum value of My is −1013.13 kN·m, and the constraining effect of the crown beam is gradually weakened.

Funder

National Natural Science Foundation of China

Key Projects of Shaanxi Natural Science Basic Research Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. Study on the interaction between landside and passive piles;Zhang;Chin. J. Rock Mech. Eng.,2002

2. Stability analysis of slope reinforced with piles and optimization;Wang;J. Cent. South Univ. (Sci. Technol.),2015

3. Design method for stabilizing piles against landslide-one row of piles;Ito;Soils Found.,1981

4. Slope stabilizing piles and pile-groups: Parametric study and design insights;Kourkoulis;J. Geotech. Geoenvironmental Eng.,2011

5. Analysis of pile stabilized slopes based on soil-pile interaction;Mohamed;Comput. Geotech.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3