Research on Mechanical Characteristics of Slope Reinforcement by Spatial Arc Crown Beam Composite Supporting Structure
-
Published:2022-12-26
Issue:1
Volume:13
Page:293
-
ISSN:2076-3417
-
Container-title:Applied Sciences
-
language:en
-
Short-container-title:Applied Sciences
Author:
Deng Yousheng,Yao Zhigang,Peng Chengpu,Li Wenjie,Zhang Keqin
Abstract
To effectively optimize the mechanical behavior of a traditional anti-slide pile and reduce environmental destruction, a new method for slope reinforcement by a spatial arc crown beam composite supporting structure was proposed. First, a numerical model was validated through lab-scale model test data obtained herein, and then a full-scale numerical model was created for an in-depth understanding of the distribution regularity of displacement along the pile, the soil pressure, the crown beam stiffness, and so on. The results demonstrated that: (1) The spatial arc crown beam is simplified to a two-hinged arch, and the maximum value of the bending moment in the arc crown beam is about one-third of the straight crown beam through theoretical calculation. (2) The spatial arc crown beam redistributes the load sharing among different piles, and the extreme bending moment of other piles varies within 10% along the downhill direction except for the piles at the slope foot. (3) Bending moments are close to zero at the pile end, and the anti-slide pile can be simplified as a vertical beam with one end fixed and the other end hinged. (4) The axial force in the spatial arc crown beam is always presented as pressure, so the crown beam can make full utilization of the compression resistance of concrete. (5) The distribution characteristic of soil pressure in front of the pile at the arch foot is different from that in other positions, and the stable soil at the slope foot provides greater soil resistance for anti-piles. (6) As the crown beam stiffness is above five times the reference value, the axial force of the crown beam tends to be stable, and as the crown beam stiffness increases continually, the maximum value of My is −1013.13 kN·m, and the constraining effect of the crown beam is gradually weakened.
Funder
National Natural Science Foundation of China
Key Projects of Shaanxi Natural Science Basic Research Program
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference38 articles.
1. Study on the interaction between landside and passive piles;Zhang;Chin. J. Rock Mech. Eng.,2002
2. Stability analysis of slope reinforced with piles and optimization;Wang;J. Cent. South Univ. (Sci. Technol.),2015
3. Design method for stabilizing piles against landslide-one row of piles;Ito;Soils Found.,1981
4. Slope stabilizing piles and pile-groups: Parametric study and design insights;Kourkoulis;J. Geotech. Geoenvironmental Eng.,2011
5. Analysis of pile stabilized slopes based on soil-pile interaction;Mohamed;Comput. Geotech.,2015
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献