Mixed-Sized Biomedical Image Segmentation Based on U-Net Architectures

Author:

Benedetti Priscilla,Femminella MauroORCID,Reali Gianluca

Abstract

Convolutional neural networks (CNNs) are becoming increasingly popular in medical Image Segmentation. Among them, U-Net is a widely used model that can lead to cutting-edge results for 2D biomedical Image Segmentation. However, U-Net performance can be influenced by many factors, such as the size of the training dataset, the performance metrics used, the quality of the images and, in particular, the shape and size of the organ to be segmented. This could entail a loss of robustness of the U-Net-based models. In this paper, the performance of the considered networks is determined by using the publicly available images from the 3D-IRCADb-01 dataset. Different organs with different features are considered. Experimental results show that the U-Net-based segmentation performance decreases when organs with sparse binary masks are considered. The solution proposed in this paper, based on automated zooming of the parts of interest, allows improving the performance of the segmentation model by up to 20% in terms of Dice coefficient metric, when very sparse segmentation images are used, without affecting the cost of the learning process.

Funder

Molecular Horizon srl to the Department of Engineering of the University of Perugia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. History-Driven Fuzzing For Deep Learning Libraries;ACM Transactions on Software Engineering and Methodology;2024-08-16

2. Utilizing convolutional neural networks (CNN) and U-Net architecture for precise crop and weed segmentation in agricultural imagery: A deep learning approach;Big Data Research;2024-05

3. Improving Biomedical Image Segmentation: An Extensive Analysis of U-Net for Enhanced Performance;2024 Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE);2024-02-22

4. SAR marine oil spill detection based on an encoder-decoder network;International Journal of Remote Sensing;2024-01-17

5. Flocking Method for Identifying of Neural Circuits in Optogenetic Datasets;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3