Investigation of Mechanical Properties of Al/CNT Nanocomposites Produced by Powder Metallurgy

Author:

Carneiro ÍrisORCID,Simões SóniaORCID

Abstract

Demanding requirements in automotive and aerospace applications promote the growing need to obtain materials and advanced technology capable of combining low weight with high mechanical properties. Aluminum matrix nanocomposites could be great candidates to respond to such needs. In this sense, this investigation aims to study the mechanical properties of nanocomposites of aluminum matrices reinforced with carbon nanotubes (CNTs). The nanocomposites were produced by powder metallurgy with 1.00 vol.% of reinforcement and ultrasonication as the dispersion method. Tensile, Vickers microhardness and nanoindentation tests were carried out in different sections. Microstructural characterizations were conducted in scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD) to understand and relate to the mechanical properties. An increase in the yield strength of 185% was observed for the nanocomposites, which can be attributed to the load transfer mechanism. However, the CNTs observed at the grain boundaries promote a decrease in the ductility of the nanocomposites. The mechanical behavior of the nanocomposites was further investigated by EBSD observation. The results revealed that the nanocomposites have a less extensive area of plastic deformation than the Al matrix, which is consistent with the tensile results. The presence of reinforcement affects the lattice rotation during the tensile test and the active slip systems, thus affecting their deformation behavior.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3