Author:
Han Oneil,Kwark Jong-Won,Lee Jung-Woo,Han Woo-Jin
Abstract
Friction material, as the main component in a bearing support, allows frictionless behavior between the two connected structures. Previous studies on friction material considered polytetrafluoroethylene (PTFE) and attempted to analyze the resulting friction behavior balance. However, aging PTFE loses its frictionless performances, because PTFE is crushed, causing it to tear, or the lubricant is removed. The performances of the friction material should thus be maintained to preserve the performance of structures. To overcome these issues, this study applies a ceramic friction material owing to its advantages of high strength, low friction, and low deformation. The frictional behavior is investigated on a full-scale model using Finite Element Analysis (FEA) according to the edge type of the ceramic friction material. The main design variables include four edge types, namely, general, camber, round and taper types. The results confirm that the modified edge types (camber, round and taper type) reduced the stress and deformation which, in turn, improved the friction behavior.
Funder
Korea Institute of Civil Engineering and Building Technology
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献