A Coupled Darcy-Forchheimer Flow Model in Fractured Porous Media

Author:

Xiong Feng,Jiang Yijun,Zhu Chun,Teng Lin,Cheng Hao,Wang Yajun

Abstract

Aiming at nonlinear flow in fractured porous media, based on the finite volume method, the discrete equations of Darcy flow in porous and Forchheimer flow in fracture were derived, and a solution method for coupling flow is proposed. The flow solution by the proposed method for single fracture and intersecting fracture is verified against Frih’s solution. Based on this method, nonlinear flow behavior for fractured rock deep-buried tunnels under high water heads was discussed. The results show that the hydraulic gradient of surrounding rock is characterized by “large at the bottom and small at the top”, with a maximum difference of 2.5 times. Therefore, the flow rate at the bottom of the tunnel is greater than that at the top. The fracture flow rate along the flow direction is also greater than that in the vertical flow direction, with a maximum difference of 60 times. The distribution homogeneity and density of fracture are the most important factors that affect the hydraulic behavior of fractured rock tunnels. The more fractures concentrated in the direction of water pressure and the greater the density, the greater the surrounding rock conductivity and the greater the flow rate of the tunnel. Under this condition, the water-inflow accident of the tunnel would be prone to occur. The research results provide a reference for the waterproof design and engineering practice of fractured rock tunnels.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. OZON TEMAS TANKLARININ HİDROLİK VE KARIŞIM VERİMLERİNİN İYİLEŞTİRİLMESİ;Uludağ University Journal of The Faculty of Engineering;2023-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3