Analysis of Microtremor Exploration Application and Construction Monitoring in a Large-Diameter Shield Tunnel

Author:

Wang ZheORCID,Sheng JianchaoORCID,Wang Rui,Li Xibin,Xiao YuanjieORCID,Yi Zihao

Abstract

In recent years, shield tunneling has shown many advantages with the development of underground rail traffic. Geological exploration plays a significant role in tunnel engineering, and detailed geological exploration results can guide the successful construction of a tunnel. This research relies on a super large-diameter shield tunnel construction, using microtremor exploration technology to collect data onsite. Combined with a comparative analysis of the borehole surveying, the reliability of microtremor exploration technology is verified. Moreover, the monitoring result of the impact of large-diameter slurry balanced shield construction on the surrounding environment is analyzed. The results show that microtremor exploration can obtain geological details that traditional detection methods cannot obtain, which can predict the possible local geology mutation in front of the tunnel in advance. The law of surface settlement curve conforms to the Peck formula. This can be divided into five stages: micro deformation, extrusion uplift, reciprocating uplift, detachment settlement, and consolidation settlement. The surface settlement on the eccentric loads side is more prominent. The maximum pressure outside the tunnel segment appears on the lower side of the monitoring section, approximately 0.41 MPa, which will increase with the grouting pressure and become stable in five days.

Funder

Joint Fund of Zhejiang Natural Science Foundation Committee Power China Huadong Engineering Corporation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3