Design and Numerical-Method-Aided Optimization of a Novel Attachment System for Implant-Retained Dental Prostheses Using NiTi Shape Memory Alloys

Author:

Shayanfard Pejman,Wendler FrankORCID,Hempel Philipp,Karl Matthias

Abstract

While nickel-titanium (NiTi) is the primary shape memory alloy (SMA) used in endodontic instruments, restorative dental components so far have not been fabricated from SMAs. The flexibility of these materials may solve problems in implant prosthodontics resulting from non-parallel implant positions and transfer inaccuracies. Based on a prototype of a novel attachment system for implant overdentures, a finite element model was created and used for studying different loading situations and design parameters followed by numerical analysis aided design optimization. The results revealed that the basic design of the attachment is capable of compensating misalignments of supporting implants as well as transfer inaccuracies of a clinically relevant magnitude by accommodating the large deformations induced under masticatory loading upon martensitic phase transformation at almost constant stress. The application of NiTi resulted in the reduction of the reaction forces recorded in the surrounding of the supporting implant, as well, the reaction forces between male and female parts of the attachment system could be reduced which will minimize wear phenomena and subsequent maintenance costs. These effects were seen to be enhanced in the optimized design.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and development of dental implants;Journal of the Indian Dental Association Tamil Nadu;2024

2. Implant-Supported Overdentures: Current Status and Preclinical Testing of a Novel Attachment System;Journal of Clinical Medicine;2023-01-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3