An Insight into the Chemistry of Cement—A Review

Author:

Lavagna LucaORCID,Nisticò RobertoORCID

Abstract

Even if cement is a well-consolidated material, the chemistry of cement (and the chemistry inside cement) remains very complex and still non-obvious. What is sure is that the hydration mechanism plays a pivotal role in the development of cements with specific final chemical compositions, mechanical properties, and porosities. This document provides a survey of the chemistry behind such inorganic material. The text has been organized into five parts describing: (i) the manufacture process of Portland cement, (ii) the chemical composition and hydration reactions involving a Portland cement, (iii) the mechanisms of setting, (iv) the classification of the different types of porosities available in a cement, with particular attention given to the role of water in driving the formation of pores, and (v) the recent findings on the use of recycled waste materials in cementitious matrices, with a particular focus on the sustainable development of cementitious formulations. From this study, the influence of water on the main relevant chemical transformations occurring in cement clearly emerged, with the formation of specific intermediates/products that might affect the final chemical composition of cements. Within the text, a clear distinction between setting and hardening has been provided. The physical/structural role of water in influencing the porosities in cements has been analyzed, making a correlation between types of bound water and porosities. Lastly, some considerations on the recent trends in the sustainable reuse of waste materials to form “green” cementitious composites has been discussed and future considerations proposed.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference126 articles.

1. Hewlett, P.C. (1998). Lea’s Chemistry of Cement and Concrete, Butterworth-Heinemann. [4th ed.].

2. Wang, Q. (2022). Fluid Chemistry, Drilling and Completion, Gulf Professional Publishing.

3. Research Review of Cement Clinker Chemistry;Ludwig;Cem. Concr. Res.,2015

4. Proposing a Three-Phase Model for Predicting the Mechanical Properties of Mortar and Concrete;Krishnya;Mater. Today Commun.,2021

5. Cement and Concrete as an Engineering Material: An Historic Appraisal and Case Study Analysis;Gagg;Eng. Fail. Anal.,2014

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3