Robust Feedback Linearization Control Design for Five-Link Human Biped Robot with Multi-Performances

Author:

Chi Kuang-HuiORCID,Hsiao Yung-Feng,Chen Chung-Cheng

Abstract

The study first proposes the difficult nonlinear convergent radius and convergent rate formulas and the complete derivations of a mathematical model for the nonlinear five-link human biped robot (FLHBR) system which has been a challenge for engineers in recent decades. The proposed theorem simultaneously has very distinctive superior advantages including the stringent almost disturbance decoupling feature that addresses the major deficiencies of the traditional singular perturbation approach without annoying “complete” conditions for the discriminant function and the global exponential stability feature without solving the impractical Hamilton–Jacobi equation for the traditional H-infinity technique. This article applies the feedback linearization technique to globally stabilize the FLHBR system that greatly improved those shortcomings of nonlinear function approximator and make the effective working range be global for whole state space, whereas the traditional Jacobian linearization technique is valid only for areas near the equilibrium point. In order to make some comparisons with traditional approaches, first example of the representative ones, that cannot be addressed well for the pioneer paper, is shown to demonstrate the fact that the effectiveness of the proposed main theorem is better than the traditional singular perturbation technique. Finally, we execute a second simulation example to compare the proposed approach with the traditional PID approach. The simulation results show that the transient behaviors of the proposed approach including the peak time, the rise time, the settling time and the maximum overshoot specifications are better than the traditional PID approach.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3