Non-Magnetic Circulator Based on a Time-Varying Phase Modulator

Author:

Jia XiangjianORCID,Jiang YanfengORCID

Abstract

Non-reciprocal devices are key elements in modern wireless communication systems. The circulator devices can simultaneously save spectrum resources and antennas. A traditional circulator is made of ferrite materials with an external magnetic bias field, and its bulk and incompatibility with CMOS technology can hardly satisfy the miniaturization and integration of modern high-speed communication systems. In recent years, there have been many outstanding achievements in the study of non-magnetic circulators, among which, the method of producing non-reciprocity by temporal modulation is considered the most likely to have a transformative influence on the industry. By varying one of the parameters of the system with time, the time inversion symmetry of the system can be broken so that the non-reciprocal devices can be formed by applying appropriate topological structures without the use of magnetic materials. In the paper, a new concept of a time-varying phase modulator (TVPM) is proposed to achieve a relatively simple method to break the symmetry of time inversion. Two different time-varying phase modulators and buffering units can be integrated to form a gyrator, with which a circulator can be formed. This paper provides a relatively simple design idea and shows the circuit design and implementation method as well as the numerical analysis and simulation results. The simulation results show that the insertion loss of the circulator at the center frequency is −1.7 dB and the isolation is −18 dB. The proposed non-magnetic circulator shows potential applicability in related 5G and pre-6G systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3