Session-Based Recommendations for e-Commerce with Graph-Based Data Modeling

Author:

Delianidi MarinaORCID,Diamantaras KonstantinosORCID,Tektonidis DimitriosORCID,Salampasis MichailORCID

Abstract

Conventional recommendation methods such as collaborative filtering cannot be applied when long-term user models are not available. In this paper, we propose two session-based recommendation methods for anonymous browsing in a generic e-commerce framework. We represent the data using a graph where items are connected to sessions and to each other based on the order of appearance or their co-occurrence. In the first approach, called Hierarchical Sequence Probability (HSP), recommendations are produced using the probabilities of items’ appearances on certain structures in the graph. Specifically, given a current item during a session, to create a list of recommended next items, we first compute the probabilities of all possible sequential triplets ending in each candidate’s next item, then of all candidate item pairs, and finally of the proposed item. In our second method, called Recurrent Item Co-occurrence (RIC), we generate the recommendation list based on a weighted score produced by a linear recurrent mechanism using the co-occurrence probabilities between the current item and all items. We compared our approaches with three state-of-the-art Graph Neural Network (GNN) models using four session-based datasets one of which contains data collected by us from a leather apparel e-shop. In terms of recommendation effectiveness, our methods compete favorably on a number of datasets while the time to generate the graph and produce the recommendations is significantly lower.

Funder

RESEARCH–CREATE–INNOVATE

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3