Two-Stage Tour Route Recommendation Approach by Integrating Crowd Dynamics Derived from Mobile Tracking Data

Author:

Hu Yue,Fang ZhixiangORCID,Zou Xinyan,Zhong Haoyu,Wang Lubin

Abstract

Tourism activities essentially represent the interaction between crowds and attractions. Thus, crowd dynamics are critical to the quality of the tourism experience in personalized tour recommendations. In order to generate dynamic, personalized tour routes, this paper develops a tourist trip design problem with crowd dynamics (TTDP-CD), which is quantified with the crowd dynamics indicators derived from mobile tracking data in terms of crowd flow, crowd interaction, and crowd structure. TTDP-CD attempts to minimize the perceived crowding and maximize the assessed value of destinations while minimizing the total distance and proposes a two-stage route strategy of “global optimization first, local update later” to deal with the sudden increase in crowding in realistic scenarios. An evolutionary algorithm is extended with container-index coding, mixed mutation operators, and a global archive to create a personalized day tour route at the urban scale. To corroborate the performance of this approach, a case study was carried out in Dalian, China. The results demonstrate that the suggested method outperforms previous approaches, such as NSGA-II, MOPSO, MOACO, and WSM, in terms of performance and solution quality and decreases real-time crowding by an average of 7%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference63 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mobile Tourism Recommender System for Users to Get a Better Choice of Tour;Wasit Journal of Computer and Mathematics Science;2023-09-30

2. Mobile Tourism Recommender System for Users to Get a Better Choice of Tour;2023 6th International Conference on Engineering Technology and its Applications (IICETA);2023-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3