Author:
Wang Xiaoxin,Wu Guozhang,Wang Yuandong,Liu Jianguo
Abstract
A broadband adjustable absorber operating in the terahertz (THz) range is presented based on a vanadium dioxide (VO2) multiple ring structure with a certain gap design. The dynamic absorption regulation of the absorber is realized by utilizing the phase-change characteristics of VO2, which is easily affected by external temperature. The simulation results show that when the external temperature reaches 350 K, the conductivity of VO2 can reach 2 × 105 S/m, and the absorber can obtain an absorption efficiency of over 90% from 3.01 THz to 7.27 THz. At this time, the absorption bandwidth reaches 4.26 THz with 82.9% of the relative bandwidth. When the external temperature reaches 300 K, the conductivity changes to 200 S/m, and the absorption efficiency is less than 4%, indicating the strong THz absorption dynamic adjustable ability. Further, through analyzing the optimal impedance matching and the electric field distribution under different conductivities, the broadband absorption mechanism of the absorber can be obtained. Finally, this paper shows that the absorption spectrum cannot be influenced by small angle incidences in both polarization modes. Therefore, the ultra-wideband adjustable absorber is expected to have applications in the terahertz fields of detecting, modulating, and switching.
Funder
the National Key Research and Development Program of China
Natural Science Foundation of Shandong Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献