ReconTraj4Drones: A Framework for the Reconstruction and Semantic Modeling of UAVs’ Trajectories on MovingPandas

Author:

Kotis KonstantinosORCID,Soularidis Andreas

Abstract

Unmanned aerial vehicles (UAVs), also known as drones, are important for several application domains, such as the military, agriculture, cultural heritage documentation, surveillance, and the delivery of goods/products/services. A drone’s trajectory can be enriched with external and heterogeneous data beyond latitude, longitude, and timestamp to create its semantic trajectory, providing meaningful and contextual information on its movement data, enabling decision makers to acquire meaningful and enriched contextual information about the current situation in the field of its operation and eventually supporting simulations and predictions of high-level critical events. In this paper, we present an ontology-based, tool-supported framework for the reconstruction, modeling, and enrichment of drones’ semantic trajectories. This framework extends MovingPandas, a widely used and open-source trajectory analytics and visualization tool. The presented research extends our preliminary work on drones’ semantic trajectories by contributing (a) an updated methodology for the reconstruction of drones’ trajectories from geo-tagged photos taken by drones during their flights in cases in which flight plans and/or real-time movement data have been lost or corrupted; (b) an enrichment of the reconstructed trajectories with external data; (c) the semantic annotation of the enriched trajectories based on a related ontology; and (d) the use of SPARQL queries to analyze and retrieve knowledge related to the flight of a drone and the field of operations (context). An evaluation of the presented framework, namely, ReconTraj4Drones, was conducted against several criteria, using real and open datasets.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3