Author:
Li Lu,Zhang Jingjie,Xu Han,Tian Mingjiao,He Chi
Abstract
Understanding the reaction path and mechanism of chlorinated volatile organic compound (CVOC) destruction is important for designing efficient catalysts, especially for the application of noble metal-based materials. Herein, several typical noble metals, Ru, Rh, Pt, Pd, Au, and Ir, supported on γ-Al2O3 catalysts were synthesized by the hydrazine hydrate reduction method for 1,2-dichloroethane (1,2-DCE) elimination. Various character measurements were conducted, and the results suggest that the high-valence state of noble metals is beneficial for the 1,2-DCE reaction as it enables the enhancement of the mobility of the surficial active oxygen species of catalysts. Among the noble metals, Ru/γ-Al2O3 expresses superior catalytic reactivity, with a 90% pollutant conversion rate at 337 °C, and competitive CO2 selectivity, 99.15% at the temperature of total oxidation. The distribution of by-products and the degradation routes were analyzed online by GC-ECD and in situ diffuse reflectance infrared spectroscopy, which may provide helpful insight for the future application of noble metal-based catalysts for CVOC elimination in industrial fields.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shaanxi Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献