Harmonic Elimination and Magnetic Resonance Sounding Signal Extraction Based on Matching Pursuit Algorithm

Author:

Tian Baofeng,Li Xiyang,Duan Haoyu,Wang Liang,Zhu Hui,Luan HuiORCID

Abstract

Magnetic resonance sounding (MRS) is a non-invasive, direct, and quantitative geophysical method for detecting groundwater, and has been widely used in groundwater survey, water resource assessment, and disaster water source forecasting. However, the MRS signal is weak (nV level) and highly susceptible to environmental noise, such as random noise and power-line harmonics, resulting in reduced quality of received data. Achieving reliable extraction of MRS signals under strong noise is difficult. To solve this problem, we propose a matching pursuit algorithm based on sparse decomposition theory for data noise suppression and MRS signal extraction. In accordance with the characteristics of the signal and noise, an oscillating atomic library is constructed as a sparse dictionary to realize signal sparse decomposition. A two-step denoising strategy is proposed to reconstruct the power-line harmonics and then extract the MRS signal. We simulated synthetic data with different signal-to-noise ratios (SNRs), relaxation times, and Larmor frequencies. Our results show that the proposed algorithm can effectively remove power-line harmonics and reduce random noise. SNR is significantly improved by up to 35.6 dB after denoising. The effectiveness and superiority of the proposed algorithm are further verified by the measured data and through comparison with the singular spectrum analysis algorithm and harmonic modeling cancellation algorithm.

Funder

National Key Research and Development Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference24 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3