Abstract
In computer vision technology, image segmentation is a significant technological advancement for the current problems of high-speed railroad image scene changes, low segmentation accuracy, and serious information loss. We propose a segmentation algorithm, DFA-UNet, based on an improved U-Net network architecture. The model uses the same encoder–decoder structure as U-Net. To be able to extract image features efficiently and further integrate the weights of each channel feature, we propose to embed the DFA attention module in the encoder part of the model for the adaptive adjustment of feature map weights. We evaluated the performance of the model on the RailSem19 dataset. The results showed that our model showed improvements of 2.48%, 0.22%, 3.31%, 0.97%, and 2.2% in mIoU, F1-score, Accuracy, Precision, and Recall, respectively, compared with U-Net. The model can effectively achieve the segmentation of railroad images.
Funder
Natural Science Foundation of Shandong Province
China Postdoctoral Science Foundation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献