A Full Loading-Based MVDR Beamforming Method by Backward Correction of the Steering Vector and Reconstruction of the Covariance Matrix

Author:

Zhou Jing,Bao Changchun

Abstract

In order to improve the performance of the diagonal loading-based minimum variance distortionless response (MVDR) beamformer, a full loading-based MVDR beamforming method is proposed in this paper. Different from the conventional diagonal loading methods, the proposed method combines the backward correction of the steering vector of the target source and the reconstruction of the covariance matrix. Firstly, based on the linear combination, an appropriate full loading matrix was constructed to correct the steering vector of the target source backward. Secondly, based on the spatial sparsity of the sound sources, an appropriate loading matrix was constructed to further suppress interferences. Thirdly, the spatial response power was utilized to derive a more accurate direction of arrival (DOA) of the target source, which is helpful for obtaining a more accurate steering vector of the target source and a more effective covariance matrix iteratively. The simulation results show that the proposed method can effectively suppress interferences and noise.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. On the performance analysis of the MVDR beamformer in the presence of correlated interference;Zoltowski;IEEE Trans. Acoust. Speech Signal Process.,1988

2. Benesty, J., Chen, J., and Huang, Y. (2008). Microphone Array Signal Processing, Springer-Verlag.

3. A Study of the LCMV and MVDR Noise Reduction Filters;Souden;IEEE Trans. Signal Process.,2010

4. Principles of minimum variance robust adaptive beamforming design;Vorobyov;Signal Process.,2013

5. Performance Study of the MVDR Beamformer as a Function of the Source Incidence Angle;Pan;IEEE/ACM Trans. Audio Speech Lang. Process.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3