A Computational Framework for 2D Crack Growth Based on the Adaptive Finite Element Method

Author:

Alshoaibi Abdulnaser M.ORCID,Fageehi Yahya AliORCID

Abstract

As a part of a damage tolerance assessment, the goal of this research is to estimate the two-dimensional crack propagation trajectory and its accompanying stress intensity factors (SIFs) using the adaptive finite element method. The adaptive finite element code was developed using the Visual Fortran language. The advancing-front method is used to construct an adaptive mesh structure, whereas the singularity is represented through construction of quarter-point single elements around the crack tip. To generate an optimal mesh, an adaptive mesh refinement procedure based on the posteriori norm stress error estimator is used. The splitting node strategy is used to model the fracture, and the trajectory follows the successive linear extensions for every crack increment. The stress intensity factors (SIFs) for each crack extension increment are calculated using the displacement extrapolation technique. The direction of crack propagation is determined using the theory of maximum circumferential stress. The present study is carried out for two geometries, namely a rectangular structure with two holes and one central crack, and a cracked plate with four holes. The results demonstrate that, depending on the position of the hole, the crack propagates in the direction of the hole due to the unequal stresses at the crack tip, which are caused by the hole’s influence. The results are consistent with other numerical investigations for predicting crack propagation trajectories and SIFs.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3