Radiomics Approach to the Detection of Prostate Cancer Using Multiparametric MRI: A Validation Study Using Prostate-Cancer-Tissue-Mimicking Phantoms

Author:

Alshomrani Faisal1,Alsaedi Basim2ORCID,Wei Cheng1,Szewczyk-Bieda Magdalena3,Gandy Stephen3,Wilson Jennifer3,Huang Zhihong1,Nabi Ghulam4

Affiliation:

1. School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK

2. Department of Statistics, University of Tabuk, Tabuk 71491, Saudi Arabia

3. Department of Clinical Radiology, Ninewells Hospital, Dundee DD1 9SY, UK

4. Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK

Abstract

Over the last few years, a number of studies have quantified the role of radiomics, dynamic contrast enhancement and standard MRI (T2WI + DWI) in detecting prostate cancer; however, the aim of this paper was to assess the advantage of combining radiomics with other multiparametric magnetic resonance imaging (mpMRI) (T2-DWI-DCE) in improving the detection of prostate cancer. This study used 10 prostate-cancer-tissue-mimicking phantoms to obtain preclinical data. We then focused on 46 patients who underwent mpMRI and Transrectal Ultrasound (TRUS) guided biopsy between September 2016 and December 2017. The texture analysis parameters combined with the mpMRI and compared with the histopathology of TRUS biopsy have been assessed statistically by principal component analysis (PCA) and discriminant component analysis (DCA). The prediction model and goodness-of-fit were examined with the Akaike information criterion (AIC) and McFadden pseudo-R-squared. In the PCA, there was a higher separation between cancerous and noncancerous tissue in the preclinical compared with the clinical data. Both AIC and R2 showed an improvement in the model in cancer prediction by adding the radiomics to mpMRI. The discriminant analysis showed an accuracy of cancer prediction of 81% compared with 100% in the pre-clinical phantom data. Combining radiomics with mpMRI showed an improvement in prostate cancer prediction. The ex vivo experiments validated the findings of this study.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3