Controlling Laser Irradiation with Tissue Temperature Feedback Enhances Photothermal Applications: Ex-Vivo Evaluation on Bovine Liver

Author:

Kaya ÖzgürORCID,Düzgören İpek,Çilesiz İnciORCID,Gülsoy MuratORCID

Abstract

Achieving repeatable and successful results without causing excessive collateral damage is of paramount importance for photothermal laser applications. Predetermined laser parameters cannot ensure patient safety and treatment success due to variance between optical and thermal characteristics among subjects. Controlling laser irradiation with tissue temperature feedback is the current gold standard for various photothermal treatments (PTT) which are rate processes described by the Arrhenius temperature integral. This study establishes the validity of our low-cost design that makes tissue surface temperature control during photothermal laser applications more accessible in resource limited clinical environments. We demonstrated the practical performance and potential of our system with ex-vivo bovine liver irradiation using an ytterbium fiber laser (λ=1071 nm) with two independent variables: laser power (3.4 W, 6.8 W and 10.2 W) and target surface temperature (55 °C, 65 °C and 75 °C). Our system efficiently maintained tissue surface temperatures at target values in all laser power groups. In contrast, fixed-dose application groups displayed a high final temperature range and variation in the control experiment. Temperature–time responses of samples varied significantly, in agreement with a wide range of optical and thermal coefficients. Long exposure duration groups (lower power, higher target temperature) displayed more radical differences suggesting a dominance of optical and thermal characteristics over the response. The low-cost surface-temperature-controlled medical laser system we have developed is capable of ensuring the success and reproducibility of PTT modalities and patient safety.

Funder

Boğaziçi University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3