Abstract
Multimorbidity refers to the coexistence of two or more chronic diseases in one person. Therefore, patients with multimorbidity have multiple and special care needs. However, in practice it is difficult to meet these needs because the organizational processes of current healthcare systems tend to be tailored to a single disease. To improve clinical decision making and patient care in multimorbidity, a radical change in the problem-solving approach to medical research and treatment is needed. In addition to the traditional reductionist approach, we propose interactive research supported by artificial intelligence (AI) and advanced big data analytics. Such research approach, when applied to data routinely collected in healthcare settings, provides an integrated platform for research tasks related to multimorbidity. This may include, for example, prediction, correlation, and classification problems based on multiple interaction factors. However, to realize the idea of this paradigm shift in multimorbidity research, the optimization, standardization, and most importantly, the integration of electronic health data into a common national and international research infrastructure is needed. Ultimately, there is a need for the integration and implementation of efficient AI approaches, particularly deep learning, into clinical routine directly within the workflows of the medical professionals.
Funder
Agentúra na Podporu Výskumu a Vývoja
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献