2D Digital Reconstruction of Asphalt Concrete Microstructure for Numerical Modeling Purposes

Author:

Klimczak MarekORCID,Jaworska Irena,Tekieli Marcin

Abstract

In this paper, we deal with the issue of asphalt concrete microstructure recognition for further numerical analysis. An efficient reconstruction of the underlying microstructure makes the composite analysis more reliable. We propose for this purpose a methodology based on the image processing and focus on a two-dimensional case (it can be easily used as a part of the 3D geometry reconstruction, however). Initially obtained geometry of the inclusions is further simplified to reduce the cost of the finite element mesh generation. Three straightforward geometry simplification algorithms are used to perform this process in a controlled way. Subsequently, we present the solutions of two problems, i.e., heat flow and elasticity (plane strain), in order to illustrate the effectiveness of the whole elaborated methodology. The numerical results were obtained using the finite element method. Consequently, an error analysis is demonstrated in order to refer the overkill mesh solutions to the ones presented in this study. The main finding of this paper is the efficient methodology dedicated to a digital reconstruction of the asphalt concrete microstructure by the image processing. It can be also extended to other materials exhibiting similar microstructure.

Funder

National Science Center

Publisher

MDPI AG

Subject

General Materials Science

Reference26 articles.

1. A two-way coupled multiscale model for predicting damage-associated performance of asphaltic roadways

2. Modeling of Asphalt Concrete;Kim,2009

3. Pavement Design: Materials, Analysis, and Highways;Islam,2020

4. Discrete Element Methods for Asphalt Concrete: Development and Application of User-Defined Microstructural Models and a Viscoelastic Micromechanical Model;Liu;Ph.D. Thesis,2011

5. Coupling of microstructural and macrostructural computational approaches for asphalt pavements under rolling tire load

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3