Dynamic Response of UHMW-PE Composite Armors under Ballistic Impact of Blunt Projectiles

Author:

Ding LiORCID,Gu Xiaohui,Shen Peihui,Kong Xiangsheng,Zhou Yi

Abstract

To study the dynamic response of UHMW-PE composite armor under ballistic impact, two kinds of UHMW-PE composite armors are designed. Both of them are composed of UHMW-PE laminates and steel face sheets of Q235. The blunt projectile is made of 35CrMnSiA, with a cylinder shape. By numerical simulation, the dynamic response and deformation of composite armors are obtained under the penetration of the projectile. With the increase of impact velocity, the penetration depth increases nearly linearly, with a more severe tendency of swaging in the projectile. Then, experiments are carried out to validate the numerical simulation results. Based on a ballistic gun with a caliber of 14.5 mm, the projectiles are fired with a velocity from 680 m/s to 1300 m/s. The penetration into the composite armor can be divided into an initial shear plugging stage and the following bulging and delamination stage. Based on the theoretical analysis, the shear strength in the shear plugging stage can be estimated. Associated with typical experimental results, numerical simulation is suitable to predict the bulging characteristics of the composite armor. The failure mode of the composite armors under the impact of blunt projectiles is determined, and the failure mechanism is analyzed. The penetration results in the experiment agree well with the numerical simulation results, which validate the correctness of the numerical simulation models. The research results can be significant in the design of composite armor with UHMW-PE laminates.

Funder

National Natural Science Foundation of China

project of State Key Laboratory of Explosion Science and Technology

Publisher

MDPI AG

Subject

General Materials Science

Reference19 articles.

1. A new membrane model for the ballistic impact response and V50 performance of multi-ply fibrous systems

2. Mechanism of high-velocity blunt-nosed projectiles penetrating moderately thick UHMWPE fiber reinforced plastic laminate;Chen;Acta Mater. Compos. Sin.,2013

3. Ballistic protective mechanism of FRC laminates;Mei;Acta Mater. Compos. Sin.,2006

4. The effect of target thickness on the ballistic performance of ultra high molecular weight polyethylene composite;Long;Int. J. Impact Eng.,2015

5. A methodology for hydrocode analysis of ultra-high molecular weight polyethylene composite under ballistic impact

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3