Synthesis and Characterization of Nanoporous ZnO Films by Controlling the Zn Sublimation by Using ZnO/Zn Precursor Films

Author:

Hernández-Rodríguez Yazmin Mariela,Lopez-Salazar Primavera,Juarez-Diaz GabrielORCID,Paredes-Rubio Gabriel Romero,Peña-Sierra Ramón

Abstract

A reliable process for the formation of nanoporous ZnO films supported on amorphous quartz and (100) silicon substrates via the processing of ZnO/Zn precursor films is reported. The process is based on the sublimation mechanism of Zn implemented in a novel ZnO/Zn precursor film to produce a nanoporous film. A scanning electron microscopy analysis of the nanoporous ZnO films’ surfaces revealed the presence of ZnO nano-features with round tips; in contrast, the nanoporous ZnO films supported on (100) Si substrates showed hexagonal nut-like nanostructures. The crystallite size of the nanoporous ZnO films decreased as the sublimation temperature was increased. X-ray photoelectron spectroscopy studies demonstrated that formations of oxygen vacancies were produced during the processing stages (as the main structural lattice defects in the ZnO nanoporous films). The analysis of the photoluminescence response confirmed that the active deep-level centers were also related to the oxygen vacancies generated during the thermal processing of the ZnO/Zn precursor films. Finally, a qualitative mechanism is proposed to explain the formation of nanoporous ZnO films on quartz and crystalline Si substrates. The results suggest that the substrates used have a strong influence on the nanoporous ZnO structures obtained with the Zn-sublimation-controlled process.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3