Microwave versus Conventional Sintering of NiTi Alloys Processed by Mechanical Alloying

Author:

Teixeira Rodolfo da SilvaORCID,Oliveira Rebeca Vieira de,Rodrigues Patrícia FreitasORCID,Mascarenhas JoãoORCID,Neves Filipe Carlos Figueiredo PereiraORCID,Paula Andersan dos SantosORCID

Abstract

The present study shows a comparison between two sintering processes, microwave and conventional sintering, for the manufacture of NiTi porous specimens starting from powder mixtures of nickel and titanium hydrogenation–dehydrogenation (HDH) milled by mechanical alloying for a short time (25 min). The samples were sintered at 850 °C for 15 min and 120 min, respectively. Both samples exhibited porosity, and the pore size results are within the range of the human bone. The NiTi intermetallic compound (B2, R-phase, and B19′) was detected in both sintered samples through X-ray diffraction (XRD) and electron backscattering diffraction (EBSD) on scanning electron microscopic (SEM). Two-step phase transformation occurred in both sintering processes with cooling and heating, the latter occurring with an overlap of the peaks, according to the differential scanning calorimetry (DSC) results. From scanning electron microscopy/electron backscatter diffraction, the R-phase and B2/B19′ were detected in microwave and conventional sintering, respectively. The instrumented ultramicrohardness results show the highest elastic work values for the conventionally sintered sample. It was observed throughout this investigation that using mechanical alloying (MA) powders enabled, in both sintering processes, good results, such as intermetallic formation and densification in the range for biomedical applications.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3