Optimizing Recloser Settings in an Active Distribution System Using the Differential Evolution Algorithm

Author:

Gumede Siyabonga Brian,Saha Akshay KumarORCID

Abstract

A recloser requires a fast operating time in the first shot to optimally clear a temporary fault. The operating time is dependent on the time-dial, the pick-up settings, and the fault current. The recloser detects the fault current from the grid supply; however, the connection of the generators in the distribution system can contribute to the fault current. Depending on the location of the generators and the direction of the current, the fault current can decrease and cause an increase in the operating time. Therefore, the optimal settings that can minimize the operating time may need to be determined. This paper simulates the behavior of a recloser in its first shot for clearing a temporary fault and tests its performance in an active distribution system that has two types of distributed generators. It then uses the differential evolution algorithm to find the optimal settings in the active distribution voltage conditions. It also applies modifications to the differential evolution algorithm and uses these modifications to find robust settings. It then uses an exponential scale factor to balance the exploration and exploitation of the algorithm chosen. Simscape power systems in Matlab Simulink is used to construct the active distribution system and simulate the cases, while the Matlab script is used to run the code for the differential evolution algorithm. Six cases are performed to find the optimal settings of the recloser. The results show that the selected settings and the differential evolution algorithm modification can optimize the operation of the recloser.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3