Geochemistry of the Tanshan Oil Shale in Jurassic Coal Measures, Western Ordos Basin: Implications for Sedimentary Environment and Organic Matter Accumulation

Author:

He Wei,Tao Shu,Hai Lianfu,Tao Rui,Wei Xiangcheng,Wang Lei

Abstract

The Tanshan area is located in the southern section of the west margin of the Ordos basin. The Middle Jurassic Yan’an Formation is relatively thick and rich in coal and oil shale layers, having positive potential for energy development. In order to explore the sedimentary environment of oil shale and the controlling factors of organic matter accumulation, 18 oil shale samples collected from two boreholes (Guyou-3 and Guyou-4) in the Tanshan area were selected as the research objects, and organic geochemical and elemental geochemical tests were carried out systematically. The results show that oil shales have the characteristics of medium oil content, medium ash, high calorific value, low sulfur and low maturity stage, which constitutes good hydrocarbon generation potential. The organic matter is mainly humic type, resulting from terrigenous debris and higher plant debris. The indictors of C-value (mean 81.90), Th/U ratio (mean 3.44), CaO/(MgO·Al2 O3) ratio (mean 0.07), δEu (mean 0.71), δCe (mean 1.15), V/(V + Ni) ratio (mean 0.79), Ceanom index (mean −0.04), Babio index (mean 488.97 μg/g), P/Ti ratio (mean 0.08), TOC/S ratio (mean 59.80), Sr/Ba ratio (mean 0.57) and (La/Yb)N ratio (mean 14.71) indicate that Tanshan oil shales were formed in a warm–humid climate and anoxic-reducing environment, with a low-salinity water body and a low deposition rate but also a relatively low initial paleoproductivity. Paleoclimate conditions, organic matter sources and redox properties of paleowater are the main controlling factors affecting the accumulation of organic matter in oil shales. Although low paleoproductivity and deposition rates are not conducive to the preservation of organic matter, under the conditions of warm and humid climate and a reducing water environment, the continuous and stable input of terrigenous debris and higher plant debris can also cause the enrichment of organic matter.

Funder

Ningxia Key Research and Development Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference74 articles.

1. Is oil shale america answer to peak-oil challenge?;Oil Gas J.,2004

2. Organic petrology of Fukang Permian Lucaogou Formation oil shales at the northern foot of Bogda Mountain, Junggar Basin, China;Int. J. Coal Geol.,2012

3. General geology and geochemistry of the lokpanta formation oil shale, nigeria;Oil Shale,2021

4. Liu, Z.J., Yang, H.L., Dong, Q.S., Zhu, J.W., and Guo, W. (2009). Oil Shale in China, Peroleum Industry Press.

5. Organic geochemistry and elements distribution in Dahuangshan oil shale, southern Junggar Basin: Origin of organic matter and depositional environment;Int. J. Coal Geol.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3