Peak Shaving in District Heating Utilizing Adaptive Predictive Control

Author:

Svensen Jan LorenzORCID

Abstract

District heating systems (DHS) are driven by the heat demands of their consumers, with higher demands giving a higher load on the heat production. While heat demands are human-dependent, they contain diurnal behaviors and weather dependencies. The diurnal behaviors contain periods with high demands causing peak loads on the heat production, which is operationally costly. This is especially true for heat pumps, a solution for DHS to include green energy, as the cost depends directly on the needed temperature. This paper presents a formulation of adaptive model predictive control (MPC) for inducing peak shaving on the production load to handle the peak load problem by using the DHS distribution network as a heat storage. It also presents a simulator model to describe the DHS. The MPC was applied to data from a case study of the DHS in Brønderslev, Denmark, showing a peak reduction of around 8%.

Funder

Innovation Fund Denmark

Innovation Fond Denmark

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference17 articles.

1. Daily heat load variations in Swedish district heating systems;Appl. Energy,2013

2. 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems;Energy,2014

3. Nielsen, H.A., and Madsen, H. (2000). Predicting the Heat Consumption in District Heating Systems Using Meteorological Forecasts, IMM, DTU. Technical Report.

4. Nielsen, T., and Madsen, H. (2002, January 14–16). Control of Supply Temperature in District Heating Systems. Proceedings of the 8th International Symposium on District heating and Cooling, Trondheim, Norway.

5. Optimal Temperature Control of Large Scale District Heating Networks;Energy Procedia,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3