Lattice Expansion and Crystallite Size Analyses of NiO-BaCe0.54Zr0.36Y0.1O3-δ Anode Composite for Proton Ceramic Fuel Cells Application

Author:

Mazlan Nurul Waheeda,Murat Munirah Shafiqah,Tseng Chung-JenORCID,Hassan Oskar HasdinorORCID,Osman NafisahORCID

Abstract

This study reports on the structure analyses of NiO-BCZY (BCZY = BaCe0.54Zr0.36Y0.1O3-δ) anode composite materials with the ratio of 50:50 for proton ceramic fuel cells (PCFCs) application. A product of sintered NiO-BCZY was developed to understand the structural properties of the anode materials. The objectives of this work were (a) to investigate the lattice expansion of the anode by using a high-temperature XRD (HT-XRD) from 400–700 °C; and (b) to calculate the crystallite size of the sample by using Scherrer’s and Williamson Hall’s methods. The results obtained from the HT-XRD revealed that the diffraction peaks of NiO and BCZY are matched with the cubic phase perovskite structure. For example at T = 400 °C, the lattice parameter of NiO is a = 4.2004 Å and BCZY is a = 4.3331 Å. The observation also showed that the lattice expansion increased with the temperature. Furthermore, analyses of the Scherrer and Williamson Hall methods, respectively, showed that the crystallite size is strongly correlated with the lattice expansion, which proved that the crystallite size increased as the operating temperature increased. The increment of crystallite size over the operating temperature contributed to the increment of conductivity values of the single cell.

Funder

Petronas

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3