Abstract
Leading edge erosion (LEE) of wind turbine blades causes decreased aerodynamic performance leading to lower power production and revenue and increased operations and maintenance costs. LEE is caused primarily by materials stresses when hydrometeors (rain and hail) impact on rotating blades. The kinetic energy transferred by these impacts is a function of the precipitation intensity, droplet size distributions (DSD), hydrometeor phase and the wind turbine rotational speed which in turn depends on the wind speed at hub-height. Hence, there is a need to better understand the hydrometeor properties and the joint probability distributions of precipitation and wind speeds at prospective and operating wind farms in order to quantify the potential for LEE and the financial efficacy of LEE mitigation measures. However, there are relatively few observational datasets of hydrometeor DSD available for such locations. Here, we analyze six observational datasets from spatially dispersed locations and compare them with existing literature and assumed DSD used in laboratory experiments of material fatigue. We show that the so-called Best DSD being recommended for use in whirling arm experiments does not represent the observational data. Neither does the Marshall Palmer approximation. We also use these data to derive and compare joint probability distributions of drivers of LEE; precipitation intensity (and phase) and wind speed. We further review and summarize observational metrologies for hydrometeor DSD, provide information regarding measurement uncertainty in the parameters of critical importance to kinetic energy transfer and closure of data sets from different instruments. A series of recommendations are made about research needed to evolve towards the required fidelity for a priori estimates of LEE potential.
Funder
US Department of Energy
NASA
NSF Extreme Science and Engineering Discovery Environment
EUDP
Estimation and Prevention of Erosion on Off-Shore Wind Turbine Blades
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献