Battery Lifetime Prediction via Neural Networks with Discharge Capacity and State of Health

Author:

Hemdani Jamila,Degaa Laid,Soltani Moez,Rizoug Nassim,Telmoudi Achraf JabeurORCID,Chaari Abdelkader

Abstract

The market share of electric vehicles (EVs) has grown exponentially in recent years to reduce air pollution and greenhouse gas emissions. The principal part of an EV is the energy storage system, which is usually the batteries. Thus, the accurate estimation of the remaining useful life (RUL) of the batteries, for an optimal health management and a decision-making policy, still remains a challenge for automakers. In this paper, the problem of battery RUL prediction is studied from a new perspective. Unlike other estimation strategies existing in the literature, the proposed technique uses an intelligent prediction of the lifespan of lithium–iron–phosphate (LFP) batteries via a modified version of neural networks. It uses a data-driven life estimation approach and optimization method and does not require any prior comprehension and initialization of any parameters of the battery model. To validate and verify the proposed technique, we use LFP battery data sets, and the experimental results showed that the proposed methodology can well learn the characteristic relationship of battery discharge capacities as well as its state of health (SOH), where the battery life cycle changes as the battery ages with time and cycles.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference44 articles.

1. The scope for improving the efficiency and environmental impact of internal combustion engines;Transp. Eng.,2020

2. The Role of Powertrain Electrification in Achieving Deep Decarbonization in Road Freight Transport;Energies,2020

3. Energy, T. (2020). Nonlinear System Identification, Energy Information Administration. Annual Energy Outlook (AEO) 2020 with Projections to 2050.

4. Cieslik, W., Szwajca, F., Golimowski, W., and Berger, A. (2021). Experimental Analysis of Residential Photovoltaic (PV) and Electric Vehicle (EV) Systems in Terms of Annual Energy Utilization. Energies, 44.

5. Analysis of air quality and health Co-benefits regarding electric vehicle promotion coupled with power plant emissions;Tech. Rep. J. Clean. Prod.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3