Taxonomy for Industrial Cluster Decarbonization: An Analysis for the Italian Hard-to-Abate Industry

Author:

Sechi Sonja,Giarola SaraORCID,Leone Pierluigi

Abstract

The share of industry in final global energy consumption was more than 30% in 2020, of which, the hard-to-abate sectors accounted for almost 60% of total final consumption in industry. Similarly, in Europe, industry accounts for around 25% of final energy consumption. In order to reduce the impact of industry in energy consumption and greenhouse gas emissions, Europe has set many policies that support and regulate the sector, including pricing carbon emissions in a cap-and-trade scheme called the European Emission Trading Scheme (EU ETS). According to the EU ETS, in 2021 the verified emissions of all stationary installations were around 1.3 billion tons of carbon dioxide equivalent emissions. In 2021, the total allocated allowances amounted to around 1 billion tons of carbon dioxide equivalent emissions, half of which were freely allocated. After reviewing the existing modeling approaches for industrial clusters and the available datasets, and assessing the energy consumption and carbon dioxide emissions at plant level using a geographical information system approach (GIS), a taxonomy for industrial cluster decarbonization was introduced. This taxonomy shows that describing industry as sets of clustered installations rather than based on the conventional sectoral economic classification provides more insights into energy transition. First, the cluster description provides a more accurate techno-economic assessment based on a finer characterization of economies of scale compared to traditional energy systems models. Second, the industrial clustering approach may more realistically show the feasibility, in addition to the costs and benefits from coupling industry with transport (e.g., industrial fleets and logistics) or buildings (e.g., city scale), due to a more detailed representation of the energy sources and sinks.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference71 articles.

1. Industrial Symbiosis: Towards a design process for eco-industrial clusters by integrating Circular Economy and Industrial Ecology perspectives;J. Clean. Prod.,2019

2. Decarbonisation of industrial clusters: A place-based research agenda;Energy Res. Soc. Sci.,2022

3. Just transitions for industrial decarbonisation: A framework for innovation, participation, and justice;Renew. Sustain. Energy Rev.,2022

4. CCS industrial clusters: Building a social license to operate;Int. J. Greenh. Gas Control,2022

5. Samadi, S., Lechtenböhmer, S., Schneider, C., Arnold, K., Fischedick, M., Schüwer, D., and Pastowski, A. (2016). Decarbonization Pathways for the Industrial Cluster of the Port of Rotterdam, Wuppertal Institute for Climate, Environment and Energy.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3