Abstract
Micro-drilling transparent dielectric materials by using non-diffracting beams impinging orthogonally to the sample can be performed without scanning the beam position along the sample thickness. In this work, the laser micromachining process, based on the combination of picosecond pulsed Bessel beams with the trepanning technique, is applied to different transparent materials. We show the possibility to create through-apertures with diameter on the order of tens of micrometers, on dielectric samples with different thermal and mechanical characteristics as well as different thicknesses ranging from two hundred to five hundred micrometers. Advantages and drawbacks of the application of this technique to different materials such as glass, polymer, or diamond are highlighted by analyzing the features, the morphology, and the aspect-ratio of the through-holes generated. Alternative Bessel beam drilling configurations, and the possibility of optimization of the quality of the aperture at the output sample/air interface is also discussed in the case of glass.
Funder
H2020 Marie Skłodowska-Curie Actions
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献