Guided Healing of Damaged Microelectrodes via Electrokinetic Assembly of Conductive Carbon Nanotube Bridges

Author:

Zhou Tuo,Michaels Matthew,Kulinsky LawrenceORCID

Abstract

The subject of healing and repair of damaged microelectrodes has become of particular interest as the use of integrated circuits, energy storage technologies, and sensors within modern devices has increased. As the dimensions of the electrodes shrink together with miniaturization of all the elements in modern electronic devices, there is a greater risk of mechanical-, thermal-, or chemical-induced fracture of the electrodes. In this research, a novel method of electrode healing using electrokinetically assembled carbon nanotube (CNT) bridges is presented. Utilizing the previously described step-wise CNT deposition process, conductive bridges were assembled across ever-larger electrode gaps, with the width of electrode gaps ranging from 20 microns to well over 170 microns. This work represents a significant milestone since the longest electrically conductive CNT bridge previously reported had a length of 75 microns. To secure the created conductive CNT bridges, they are fixed with a layer of electrodeposited polypyrrole (a conductive polymer). The resistance of the resulting CNT bridges, and its dependence on the size of the electrode gap, is evaluated and explained. Connecting electrodes via conductive CNT bridges can find many applications from nanoelectronics to neuroscience and tissue engineering.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3