Biochar Prepared by Microwave-Assisted Co-Pyrolysis of Sewage Sludge and Cotton Stalk: A Potential Soil Conditioner

Author:

Qu Junshen1,Wang Daiying1,Deng Zeyu1,Yu Hejie1,Dai Jianjun1,Bi Xiaotao2

Affiliation:

1. Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

2. Clean Energy Research Centre, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada

Abstract

The reduction and safe disposal of sewage sludge remains an urgent problem worldwide. In this work, biochar prepared from co−pyrolysis of sewage sludge and cotton stalk at different mix ratios and different pyrolysis temperatures was prepared using a novel microwave-assisted auger reactor. The obtained biochar samples were mixed with selected soil samples at different mix ratios for a short−term plant−growing test to examine their abilities as a soil conditioner on nitrogen fixation and retention. The addition of biochar could increase the total nitrogen in the soil to 0.3951% compared to 0.0403% in the untreated soil, while the concentration of available nitrogen could be increased to 114.45 mg·kg−1 compared to 47.95 mg·kg−1 in the untreated soil. Moreover, the introduction of biochar to the soil also contributed to the growth of corn seedlings, which grew at a rate of 3.41 cm·d−1 compared to 3.03 cm·d−1 in untreated soil. The results show that the addition of biochar can enrich total soil nitrogen before and after incubation and promote the growth of corn seedlings, providing a potential route for the safe disposal and resource recovery of sewage sludge.

Funder

Beijing Advanced Innovation Center for Soft Matter Science and Engineering

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3