Long-Term Conservation Agriculture Influences Weed Diversity, Water Productivity, Grain Yield, and Energy Budgeting of Wheat in North-Western Indo-Gangetic Plains
-
Published:2023-04-27
Issue:9
Volume:15
Page:7290
-
ISSN:2071-1050
-
Container-title:Sustainability
-
language:en
-
Short-container-title:Sustainability
Author:
Sharma Tarun1ORCID, Das Tapas Kumar1, Maity Pragati Pramanik2, Biswas Sunanda3, Sudhishri Susama4, Govindasamy Prabhu1, Raj Rishi1, Sen Suman1, Singh Teekam1, Paul Amrit Kumar5, Roy Arkaprava1, Babu Subhash1ORCID, Rathi Neelmani1
Affiliation:
1. Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India 2. Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India 3. Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India 4. Water Technology Centre, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India 5. ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110 012, India
Abstract
Wheat is grown in an area totalling 31.1 million hectares in India. The North-western Indo-Gangetic Plains (IGP) constitutes the major share of area and production of wheat in India and is known as the wheat belt of India. However, sustaining wheat production under declining/lower resource-use efficiency in the existing rice–wheat cropping system has led to considerations about diversifying this system with a pigeon pea–wheat system (PWS) in the IGP of India. However, little or no information is available on the impact of CA-based PWS on weed dynamics, productivity, profitability, and resource-use efficiencies. Therefore, we studied these aspects in wheat under a long-term (~12 years) conservation agriculture (CA)-based PWS. Treatments were conventional till flatbed (CT), ZT permanent narrow beds (PNBR & PNB), broad beds (PBBR & PBB), and flat beds (PFBR & PFB) with and without residue (R) retention and different N levels (75% and 100% of the recommended N). The results showed that the Shannon–Weiner index and the Simpson dominance index were higher under the CA system in 2021–2022 than in 2010–2011 and 2015–2016, indicating a change in weed diversity over the period. Furthermore, the Sorensen similarity index showed that there was not much difference in weed diversity for 2010–2011. However, in 2015–2016 and 2021–2022 respectively, only 89% (0.89) and 62% (0.62) of weed species were common to both CT and CA systems, indicating a shift in weed species in the long-term CA system in 2021–2022. Residue retention and N dose decreased weed density at 30 days after sowing (DAS). All the CA-based (PFBR100N, PBBR100N, PNBR100N, PFBR75N, PBBR75N, and PNBR75N) treatments reduced the weed density and dry weight compared to CT at 30 DAS. Wheat grain yield and net returns increased by 11.6–14.9% and 19.4–23.8% over CT in CA treatments, of which PFBR100N and PBBR100N were superior. The PBBR100N and PBBR75N systems had water productivity significantly higher than CT. Residue retention in ZT permanent beds reduced energy productivity in CA than CT and no residue treatments. In the 12th year, CA with 75% N (PFBR75N, PBBR75N, PNBR75N) resulted in a higher partial factor productivity of N and total NPK applied. Contrast analysis showed that 75% N was comparable with 100% N on crop, water, and energy productivities and 75% N was superior to 100% N on partial factor productivity of N and total NPK. Thus, the permanent broad bed with residue and 100% N in the initial years and 75% N in later years can be adopted in the north-western IGP for better weed suppression, higher yield, profitability, and resource-use efficiency.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|