Facile Fabrication of Fe2O3/TiO2 Composite from Titanium Slag as Adsorbent for As(V) Removal from Aqueous Media

Author:

Tran Chinh Van1,Nguyen Phuong Thi Hoai1ORCID,Nguyen Dinh Duc2ORCID,Pham Hanh T. T.1,Do Dinh Trung3,La Duong Duc1ORCID

Affiliation:

1. Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi 100000, Vietnam

2. Department of Environmental Energy Engineering, Kyonggi University, Goyang 10285, Republic of Korea

3. Institute of Tropical Durability, Joint Vietnam-Russia Tropical Science and Technology Research Center, Cau Giay, Hanoi 100000, Vietnam

Abstract

Mixed metal oxide composites have been widely used as adsorbents for the removal of heavy metal ions from wastewater. In this work, Fe2O3/TiO2 composite was sustainably prepared via the treatment of titanium slag with a low-concentration sulfuric acid solution (20%) and used for the removal of As(V) from aqueous solutions. The resulting products were characterized by X-ray diffraction (XRD), N2 adsorption−desorption, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The batch adsorption was employed to investigate the removal efficiency of the Fe2O3/TiO2 adsorbent toward As(V). The Langmuir and Freundlich isotherms were plotted in order to study the adsorption process. The adsorption of As(V) on FeO3/TiO2 fitted well with the Freundlich isotherm model, suggesting a multilayer adsorption process with an adsorption capacity of 68.26 mg·g−1. The adsorption kinetics study demonstrated that the adsorption behavior of the Fe2O3/TiO2 composite for the As(V) was pseudo-second-order. With low-cost preparation and high adsorption capacity, the prepared Fe2O3/TiO2 adsorbent could be used as an effective adsorbent for As(V) removal from contaminated water sources. The approach utilized in this research is viewed as a sustainable route for creating a proficient adsorbent for the purification of water.

Funder

National Key Science and Technology Program

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3